Chlorinated chemical vapor deposition (CVD) chemistry for growth of homoepitaxial layers of silicon carbide (SiC) has paved the way for very thick epitaxial layers in short deposition time as well as novel crystal growth processes for SiC. Here, we explore the possibility to also use a brominated chemistry for SiC CVD by using HBr as additive to the standard SiC CVD precursors. We find that brominated chemistry leads to the same high material quality and control of material properties during deposition as chlorinated chemistry and that the growth rate is on average 10 % higher for a brominated chemistry compared to chlorinated chemistry. Brominated and chlorinated SiC CVD also show very similar gas phase chemistries in thermochemical modelling. This study thus argues that brominated chemistry is a strong alternative for SiC CVD since the deposition rate can be increased with preserved material quality. The thermochemical modelling also suggest that the currently used chemical mechanism for halogenated SiC CVD might need to be revised.
展开▼